Documentation
Languages and Frameworks/Data Science

Data Science Support

ThinkCode provides comprehensive support for data science and machine learning workflows, offering specialized tools, intelligent code assistance, and powerful features designed to enhance productivity throughout the entire lifecycle of data science projects.

Getting Started

Setup and Configuration

ThinkCode automatically detects data science projects. For optimal experience:

  1. Install Data Science Extension:

    • ThinkCode will prompt to install the Data Science extension when you open relevant files
    • Alternatively, open the Extensions view (Ctrl+Shift+X / Cmd+Shift+X) and search for "ThinkCode Data Science"
  2. Install Required Tools:

    • Ensure Python, R, or Julia is installed on your system
    • ThinkCode will detect these installations automatically
    • Configure versions in settings if needed
  3. Project Configuration:

    • ThinkCode supports standard data science project structures
    • Automatically recognizes requirements.txt, environment.yml, and other dependency files
    • Configures the environment variables appropriately
  4. Create a New Project:

    • Command Palette (Ctrl+Shift+P / Cmd+Shift+P)
    • Type "ThinkCode: Create New Project"
    • Select Data Science from template categories
    • Choose from templates:
      • Data Analysis Project
      • Machine Learning Project
      • Deep Learning Project
      • Research Notebook Collection
      • Data Visualization Project

Language Support

Python for Data Science

ThinkCode provides exceptional support for Python data science libraries:

  • Core Libraries:

    • NumPy
    • pandas
    • Matplotlib/Seaborn
    • SciPy
  • Machine Learning:

    • scikit-learn
    • TensorFlow/Keras
    • PyTorch
    • XGBoost
  • Data Visualization:

    • Plotly
    • Bokeh
    • Altair
    • Dash

Example of Python data science code with intelligent assistance:

# ThinkCode provides intelligent assistance for data science
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
 
# ThinkCode offers autocompletion for data loading methods
data = pd.read_csv('customer_data.csv')
 
# ThinkCode provides insights on data preview and exploration
print(data.head())
print(data.info())
print(data.describe())
 
# ThinkCode suggests data cleaning operations
# Handling missing values
data.dropna(subset=['income'], inplace=True)
data['age'].fillna(data['age'].median(), inplace=True)
 
# ThinkCode proposes feature engineering methods
# Creating new features
data['income_per_family_member'] = data['income'] / data['family_size']
data['is_high_value'] = data['purchase_amount'] > 1000
 
# One-hot encoding categorical variables
data = pd.get_dummies(data, columns=['category', 'location'])
 
# ThinkCode assists with visualization code
plt.figure(figsize=(10, 6))
sns.histplot(data=data, x='age', hue='is_high_value', bins=20, multiple='stack')
plt.title('Age Distribution by Customer Value')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
 
# ThinkCode provides smart suggestions for model preparation
# Preparing data for modeling
X = data.drop(['customer_id', 'is_high_value'], axis=1)
y = data['is_high_value']
 
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)
 
# ThinkCode understands ML model APIs
# Training a model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
 
# ThinkCode assists with evaluation code
# Evaluating the model
y_pred = model.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
 
# ThinkCode provides feature importance visualization suggestions
# Visualizing feature importance
feature_importance = pd.DataFrame({
    'feature': X.columns,
    'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
 
plt.figure(figsize=(12, 8))
sns.barplot(x='importance', y='feature', data=feature_importance.head(10))
plt.title('Top 10 Feature Importance')
plt.tight_layout()
plt.show()

R Language Support

Comprehensive support for R data science workflows:

  • Core Packages:

    • tidyverse (dplyr, ggplot2, tidyr, etc.)
    • data.table
    • caret
    • mlr3
  • Machine Learning:

    • randomForest
    • xgboost
    • e1071
    • neuralnet
  • Data Visualization:

    • ggplot2
    • plotly
    • shiny
    • leaflet

Example of R data science code with intelligent assistance:

# ThinkCode provides intelligent assistance for R
library(tidyverse)
library(caret)
library(randomForest)
 
# ThinkCode offers autocompletion for data loading
customer_data <- read_csv("customer_data.csv")
 
# ThinkCode provides insights on data exploration
glimpse(customer_data)
summary(customer_data)
 
# ThinkCode suggests data cleaning operations
# Handling missing values
customer_data <- customer_data %>%
  filter(!is.na(income)) %>%
  mutate(age = if_else(is.na(age), median(age, na.rm = TRUE), age))
 
# ThinkCode proposes feature engineering methods
# Creating new features
customer_data <- customer_data %>%
  mutate(
    income_per_family_member = income / family_size,
    is_high_value = purchase_amount > 1000
  )
 
# ThinkCode assists with visualization code
# Visualizing age distribution by customer value
ggplot(customer_data, aes(x = age, fill = is_high_value)) +
  geom_histogram(bins = 20, position = "stack") +
  labs(
    title = "Age Distribution by Customer Value",
    x = "Age",
    y = "Count"
  ) +
  theme_minimal()
 
# ThinkCode provides smart suggestions for model preparation
# Preparing data for modeling
customer_data <- customer_data %>%
  select(-customer_id) %>%
  mutate_if(is.character, as.factor)
 
# Creating training and test sets
set.seed(42)
train_indices <- createDataPartition(
  customer_data$is_high_value, 
  p = 0.8, 
  list = FALSE
)
train_data <- customer_data[train_indices, ]
test_data <- customer_data[-train_indices, ]
 
# ThinkCode understands ML model APIs
# Training a random forest model
model <- randomForest(
  is_high_value ~ ., 
  data = train_data,
  ntree = 100,
  importance = TRUE
)
 
# ThinkCode assists with evaluation code
# Evaluating the model
predictions <- predict(model, test_data)
conf_matrix <- confusionMatrix(predictions, test_data$is_high_value)
print(conf_matrix)
 
# ThinkCode provides feature importance visualization suggestions
# Visualizing feature importance
importance_df <- as.data.frame(importance(model)) %>%
  rownames_to_column("feature") %>%
  arrange(desc(MeanDecreaseGini))
 
ggplot(importance_df[1:10, ], aes(x = reorder(feature, MeanDecreaseGini), y = MeanDecreaseGini)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  coord_flip() +
  labs(
    title = "Top 10 Feature Importance",
    x = "Feature",
    y = "Importance (Mean Decrease in Gini)"
  ) +
  theme_minimal()

Julia Support

Support for the Julia language for scientific computing:

  • Core Packages:

    • DataFrames.jl
    • Plots.jl
    • Statistics.jl
    • MLJ.jl
  • Machine Learning:

    • Flux.jl
    • ScikitLearn.jl
    • DecisionTrees.jl

Interactive Notebooks

Jupyter Notebook Integration

Seamless Jupyter notebook experience:

  • Notebook Editor: Rich editing experience for .ipynb files
  • Code Execution: Run cells directly in ThinkCode
  • Output Visualization: Rich output display (plots, tables, etc.)
  • Variable Explorer: Inspect variables and their values
  • Kernel Management: Switch between different kernels

Example notebook features:

  • Syntax highlighting for code cells
  • Markdown preview for text cells
  • Interactive widgets support
  • Export to various formats (HTML, PDF, etc.)

Polyglot Notebook Support

Work with multiple languages in a single notebook:

  • Multiple Languages: Python, R, SQL, and more in the same notebook
  • Shared Memory: Exchange data between cells of different languages
  • Rich Output: Consistent visualization across languages
  • Magic Commands: Special commands for notebook-specific operations

Data Management and Visualization

Data Explorer

Visual exploration of datasets:

  • Data Preview: View datasets in tabular format
  • Filter and Sort: Interactively explore data
  • Column Statistics: View quick statistics for each column
  • Custom Queries: Run SQL or code snippets on datasets

Access Data Explorer:

  1. Right-click on a CSV, Excel, or other data file
  2. Select "Open with Data Explorer"
  3. Interact with the dataset visually

Visualization Preview

Interactive visualization capabilities:

  • Plot Preview: See plots directly in the editor or notebook
  • Interactive Plots: Zoom, pan, and hover for details
  • Export Options: Save visualizations in various formats
  • Theme Customization: Apply custom styles to visualizations

AI-Powered Data Science Features

Smart Code Generation

Generate data science code with natural language prompts:

  1. Analysis Code Generation:

    • Add a comment describing the analysis goal
    • Press Alt+I / Option+I for AI implementation

    Example:

    # Generate code to analyze the correlation between customer demographics and purchase behavior
    # Press Alt+I here and ThinkCode generates the implementation
     
    # Load and prepare the data
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
     
    # Load the customer data
    data = pd.read_csv('customer_data.csv')
     
    # Basic data exploration
    print("Data shape:", data.shape)
    print("\nData types:")
    print(data.dtypes)
    print("\nMissing values:")
    print(data.isnull().sum())
     
    # Calculate correlation between numeric features
    numeric_cols = data.select_dtypes(include=[np.number]).columns
    correlation = data[numeric_cols].corr()
     
    # Visualize correlation matrix
    plt.figure(figsize=(12, 10))
    mask = np.triu(correlation)
    sns.heatmap(correlation, annot=True, mask=mask, cmap='coolwarm', linewidths=0.5)
    plt.title('Correlation Between Customer Features')
    plt.tight_layout()
    plt.show()
     
    # Analyze relationship between demographics and purchase amount
    plt.figure(figsize=(16, 12))
     
    # Age vs Purchase Amount
    plt.subplot(2, 2, 1)
    sns.scatterplot(data=data, x='age', y='purchase_amount', hue='gender')
    plt.title('Age vs Purchase Amount by Gender')
     
    # Income vs Purchase Amount
    plt.subplot(2, 2, 2)
    sns.scatterplot(data=data, x='income', y='purchase_amount', hue='gender')
    plt.title('Income vs Purchase Amount by Gender')
     
    # Purchase Amount by Region
    plt.subplot(2, 2, 3)
    sns.boxplot(data=data, x='region', y='purchase_amount')
    plt.title('Purchase Amount by Region')
    plt.xticks(rotation=45)
     
    # Purchase Amount by Customer Segment
    plt.subplot(2, 2, 4)
    sns.barplot(data=data, x='customer_segment', y='purchase_amount')
    plt.title('Average Purchase Amount by Customer Segment')
    plt.xticks(rotation=45)
     
    plt.tight_layout()
    plt.show()
     
    # Calculate and show key statistics grouped by demographic factors
    demographic_analysis = data.groupby(['gender', 'customer_segment', 'region'])[['purchase_amount', 'purchase_frequency']].agg(['mean', 'median', 'std'])
    print("Demographic Analysis:")
    print(demographic_analysis)
  2. Model Building:

    • Describe model requirements in a comment
    • ThinkCode generates model building and evaluation code
  3. Data Visualization:

    • Specify visualization needs
    • ThinkCode generates tailored visualization code

Data Analysis Assistant

AI-powered assistance for data analysis tasks:

  • Exploratory Analysis: Get suggestions for exploring your dataset
  • Feature Engineering: Receive recommendations for creating new features
  • Model Selection: Get guidance on appropriate models for your task
  • Results Interpretation: AI-assisted interpretation of model results

Access Data Analysis Assistant:

  1. Command Palette
  2. Type "ThinkCode: Data Analysis Assistant"
  3. Enter your analysis question or goal

Example assistant interactions:

  • "Suggest ways to handle missing values in my dataset"
  • "Recommend feature engineering for customer churn prediction"
  • "Help me interpret these model coefficients"
  • "Suggest visualizations for exploring the relationship between variables X and Y"

Code Improvement Suggestions

Get intelligent suggestions for improving data science code:

  • Performance Optimization: Identify and fix slow code
  • Best Practices: Suggestions for following data science best practices
  • Vectorization: Convert loop-based code to vectorized operations
  • Memory Usage: Tips for reducing memory consumption

Project Management for Data Science

Experiment Tracking

Track and manage machine learning experiments:

  • Experiment Logging: Record parameters, metrics, and artifacts
  • Comparison View: Compare different experiment runs
  • Visualization Tools: Plot metrics across experiments
  • Integration Options: Connect with MLflow, Weights & Biases, etc.

Data Version Control

Manage datasets and models with Git-like versioning:

  • Dataset Versioning: Track changes to datasets
  • Model Registry: Version and catalog models
  • Artifact Storage: Store and retrieve large files efficiently
  • Integration with DVC: Full support for Data Version Control

Debugging and Profiling

Data Science Debugging

Specialized debugging for data science workflows:

  • Array Visualization: Debug NumPy arrays and pandas DataFrames
  • Value History: Track how variable values change
  • Conditional Breakpoints: Break when data conditions are met
  • Tensor Inspection: Visualize and inspect deep learning tensors

Performance Profiling

Identify and resolve performance issues:

  • Code Profiling: Find bottlenecks in data processing code
  • Memory Profiling: Track memory usage and detect leaks
  • GPU Monitoring: Monitor GPU utilization and memory
  • Optimization Suggestions: Get actionable advice for improvements

Example profiling and optimization:

# ThinkCode provides memory and performance profiling
from thinkcode.profiling import profile_memory, profile_time
 
# Profile memory usage of a pandas operation
@profile_memory
def preprocess_data(data):
    # Various preprocessing steps
    data = data.copy()
    data['new_feature'] = data['A'] * data['B']
    data = pd.get_dummies(data, columns=['category'])
    data = data.groupby('group').transform('mean')
    return data
 
# Profile execution time
@profile_time
def train_model(X, y):
    model = RandomForestClassifier(n_estimators=100)
    model.fit(X, y)
    return model
 
# ThinkCode shows memory and time usage, and provides suggestions
# for improving performance and reducing memory usage

Machine Learning Model Development

Model Building Workflow

Comprehensive support for the ML development lifecycle:

  • Data Preparation: Tools for cleaning, transforming, and splitting data
  • Feature Engineering: Assistance for creating and selecting features
  • Model Training: Support for various ML libraries and frameworks
  • Hyperparameter Tuning: Tools for optimizing model parameters
  • Evaluation: Comprehensive model evaluation capabilities

Deep Learning Support

Specialized tools for deep learning development:

  • Architecture Visualization: Visualize neural network architectures
  • Training Monitoring: Track and visualize training progress
  • GPU Utilization: Monitor and optimize GPU usage
  • TensorBoard Integration: Visualize TensorFlow logs directly

Example TensorFlow code with intelligent assistance:

# ThinkCode provides intelligent assistance for TensorFlow
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers
import numpy as np
import matplotlib.pyplot as plt
 
# ThinkCode understands TensorFlow APIs
# Build a CNN model for image classification
def create_model(input_shape, num_classes):
    model = keras.Sequential([
        layers.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax")
    ])
    
    # ThinkCode suggests appropriate optimizers and loss functions
    model.compile(
        optimizer=optimizers.Adam(learning_rate=0.001),
        loss="categorical_crossentropy",
        metrics=["accuracy"]
    )
    
    return model
 
# ThinkCode provides data preparation assistance
# Load and prepare dataset
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
 
# Normalize pixel values
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
 
# One-hot encode the labels
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# Create and train the model
model = create_model((32, 32, 3), 10)
 
# ThinkCode understands callbacks and training configuration
# Set up callbacks for monitoring training
callbacks = [
    keras.callbacks.EarlyStopping(patience=5, restore_best_weights=True),
    keras.callbacks.ReduceLROnPlateau(factor=0.2, patience=3),
    keras.callbacks.TensorBoard(log_dir="./logs")
]
 
# Train the model
history = model.fit(
    x_train, y_train,
    batch_size=64,
    epochs=20,
    validation_split=0.2,
    callbacks=callbacks
)
 
# ThinkCode assists with evaluation and visualization
# Evaluate the model
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test accuracy: {test_acc:.4f}")
 
# Plot training history
plt.figure(figsize=(12, 4))
 
plt.subplot(1, 2, 1)
plt.plot(history.history["accuracy"], label="Train")
plt.plot(history.history["val_accuracy"], label="Validation")
plt.title("Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
 
plt.subplot(1, 2, 2)
plt.plot(history.history["loss"], label="Train")
plt.plot(history.history["val_loss"], label="Validation")
plt.title("Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
 
plt.tight_layout()
plt.show()

Deployment and Productionization

Model Deployment

Tools for deploying ML models to production:

  • Export Formats: Save models in various formats (ONNX, TensorRT, etc.)
  • Containerization: Package models with Docker
  • API Generation: Create REST APIs for models
  • Serverless Deployment: Deploy to serverless environments

Example model deployment code:

# ThinkCode provides model deployment assistance
from thinkcode.deployment import prepare_model_for_deploy, create_api
 
# Save the trained model for deployment
model_path = prepare_model_for_deploy(model, format='onnx', quantize=True)
 
# Create a REST API for the model
api_code = create_api(
    model_path,
    framework='fastapi',
    input_example=x_test[0:1],
    requirements=['numpy', 'pandas', 'onnxruntime']
)
 
# ThinkCode can generate Docker and Kubernetes configurations
# for deploying the model API

Monitoring and Maintenance

Support for monitoring models in production:

  • Performance Tracking: Monitor model metrics over time
  • Data Drift Detection: Identify shifts in input data distributions
  • Automated Retraining: Tools for updating models with new data
  • A/B Testing: Compare different model versions

Integration with External Services

Cloud Services Integration

Connect with popular cloud ML platforms:

  • AWS SageMaker: Develop, train, and deploy on SageMaker
  • Azure ML: Integration with Azure Machine Learning
  • Google AI Platform: Connect with Google's AI services
  • Databricks: Work with Databricks environments

Dataset Repositories

Access and publish datasets:

  • Public Datasets: Browse and load from Kaggle, UCI, etc.
  • Dataset Search: Find relevant datasets for your task
  • Version Control: Track changes to datasets
  • Publishing Tools: Share datasets with the community

Customization

Extension Points

Extend ThinkCode's data science capabilities:

  • Custom Visualizations: Create specialized visualization tools
  • Analysis Templates: Define reusable analysis templates
  • Model Interpreters: Build custom model interpretation tools
  • Integration Plugins: Connect with additional services

Configuration Options

Comprehensive configuration for data science workflows:

{
  "thinkcode.dataScience": {
    "python": {
      "condaPath": null,
      "pythonPath": null,
      "defaultInterpreter": "conda",
      "virtualEnvPath": "${workspaceFolder}/.venv",
      "pipenvPath": null
    },
    "r": {
      "rPath": null,
      "termsOfUse": true,
      "sessionWatcher": true
    },
    "jupyter": {
      "enableAutoMoveToNextCell": true,
      "allowKernelInterop": true,
      "themeMatching": true,
      "maxOutputSize": 10000,
      "sendSelectToInteractiveWindow": true
    },
    "plotting": {
      "enablePlotViewer": true,
      "plotTheme": "auto", // Options: "auto", "light", "dark"
      "defaultPlotPackage": "matplotlib", // Options: "matplotlib", "plotly", "bokeh"
      "savePlotPath": "${workspaceFolder}/plots"
    },
    "experiment": {
      "trackingEnabled": true,
      "trackingProvider": "mlflow", // Options: "mlflow", "wandb", "tensorboard", "custom"
      "trackingUri": null,
      "artifactLocation": "${workspaceFolder}/mlruns"
    },
    "gpu": {
      "monitoring": true,
      "preferredBackend": "auto" // Options: "auto", "tensorflow", "pytorch", "mxnet"
    }
  }
}

Resources and Learning

Learning Paths

Integrated learning resources:

  • Data Science Tutorials: Learn fundamental concepts
  • Machine Learning Courses: Framework-specific learning paths
  • Interactive Challenges: Practice with hands-on exercises
  • Sample Projects: Explore and learn from example projects

Access learning resources:

  1. Command Palette
  2. Type "ThinkCode: Open Learning Hub"
  3. Select Data Science category

Community Integration

Connect with the data science community:

  • Documentation: Access library documentation inline
  • Stack Overflow: Search solutions directly from ThinkCode
  • GitHub: Find example implementations
  • Research Papers: Access and cite relevant papers

Common Data Science Workflows

Structured Data Analysis

Specialized tools for tabular data analysis:

  • EDA Workflows: Standard exploratory data analysis patterns
  • Feature Selection: Tools for identifying important features
  • Automated ML: AutoML capabilities for structured data
  • Time Series Analysis: Specialized tools for time series data

Natural Language Processing

Support for text data and NLP tasks:

  • Text Preprocessing: Tools for cleaning and tokenizing text
  • Embedding Visualization: Visualize word and document embeddings
  • Model Integration: Connection with Hugging Face transformers
  • Language Model Fine-tuning: Tools for customizing language models

Computer Vision

Tools for image and video analysis:

  • Image Preprocessing: Image loading, transformation, and augmentation
  • Model Visualization: Visualize CNN activations and features
  • Dataset Management: Handle large image datasets efficiently
  • Annotation Tools: Create and manage image annotations

Further Information